In the realm of orthodontics, the use of adhesives has been a cornerstone for securing brackets and other appliances to the teeth. Traditional adhesives, such as composite resins, glass ionomer cements, and polyacid-modified composite resins, have been widely utilized due to their effectiveness and ease of application. Composite resins, in particular, have been favored for their strong bond strength and aesthetic qualities. However, these adhesives are not without their limitations.
One significant limitation is the potential for bond failure. Despite their strong initial bond, composite resins can degrade over time due to the oral environment's harsh conditions, including fluctuating pH levels, mechanical stress from chewing, and exposure to various substances. This degradation can lead to debonding, necessitating re-treatment and prolonging the orthodontic process.
Another challenge is the difficulty in achieving a consistent and reliable bond across different patients and varying tooth surfaces. Factors such as enamel quality, moisture control during application, and the skill of the clinician can influence the bond's integrity. Additionally, traditional adhesives may not always provide optimal fluoride release, which is beneficial for preventing enamel demineralization-a common issue during orthodontic treatment.
Moreover, the removal of traditional adhesives post-treatment can be laborious and may risk enamel damage. The process often requires the use of abrasive instruments, which can lead to enamel wear and potentially compromise the tooth's structural integrity.
In conclusion, while traditional adhesives have served orthodontics well, their limitations in durability, consistency, and post-treatment enamel preservation highlight the need for innovative adhesive solutions. Advancements in adhesive technology aim to address these challenges, offering more robust, reliable, and patient-friendly options for long-lasting bonds in orthodontic care.
In recent years, the field of adhesive technology has seen remarkable advancements that have significantly enhanced both bond strength and longevity. These innovations are driven by the increasing demand for durable and reliable adhesive solutions across various industries, including automotive, aerospace, construction, and electronics.
One of the most notable innovations is the development of high-performance epoxy adhesives. These adhesives have been formulated to offer superior mechanical properties, such as high tensile strength and excellent resistance to chemicals and environmental factors. The introduction of nano-fillers and hybrid materials into epoxy formulations has played a crucial role in boosting their performance. These additives help in creating a more robust molecular structure, which translates to stronger and more durable bonds.
Another significant advancement is the emergence of cyanoacrylate adhesives with improved formulations. Traditionally known for their rapid curing times, cyanoacrylates have now been enhanced to provide stronger bonds with better resistance to heat and moisture. The addition of tackifiers and plasticizers has made these adhesives more versatile, allowing them to bond a wider range of materials effectively.
Silicone-based adhesives have also undergone substantial improvements. Modern silicone adhesives are now designed to offer exceptional flexibility and durability, making them ideal for applications where materials are subject to movement or vibration. These adhesives can withstand extreme temperatures and are highly resistant to UV radiation, oxidation, and weathering, ensuring long-lasting performance in harsh environments.
Moreover, the development of hybrid adhesives represents a cutting-edge approach in adhesive technology. These adhesives combine the best properties of different adhesive types, such as the strength of epoxies and the flexibility of silicones. Hybrid adhesives are particularly beneficial in applications where materials with different properties need to be bonded together, providing a solution that offers both strength and versatility.
In addition to these material-based innovations, advancements in application techniques have also contributed to improved bond strength and longevity. Precision dispensing systems and automated application methods ensure that the right amount of adhesive is applied consistently, reducing the risk of bond failure due to human error. Furthermore, the use of surface preparation technologies, such as plasma treatment and corona treatment, has enhanced the adhesion properties of various substrates, leading to stronger and more reliable bonds.
In conclusion, the recent innovations in adhesive technology have significantly improved bond strength and longevity. Through the development of high-performance epoxy adhesives, enhanced cyanoacrylates, advanced silicone-based adhesives, and hybrid formulations, along with improved application techniques, these adhesives are now capable of meeting the demanding requirements of modern industries. As research and development in this field continue to progress, we can expect even more groundbreaking adhesive solutions that will further push the boundaries of what is possible in bonding technology.
Adhesive innovations have significantly transformed the field of orthodontics, particularly benefiting pediatric patients. These new adhesives are engineered to create long-lasting bonds between orthodontic appliances, such as brackets and wires, and the teeth. The mechanism behind these adhesives involves a chemical reaction that forms a strong connection at the molecular level. When the adhesive is applied to the tooth surface and the bracket, it undergoes a curing process, often accelerated by light, which solidifies the bond.
One of the key benefits of these new adhesives is their enhanced durability. Traditional adhesives sometimes failed over time, leading to bracket detachment and the need for repairs or replacements. The advanced formulations of modern adhesives ensure a more robust bond, reducing the likelihood of such issues. This is particularly advantageous for children, who may be less cautious with their oral hygiene and dietary habits.
Another significant advantage is the reduced risk of enamel damage. Pediatric patients often have more delicate enamel compared to adults, making them more susceptible to damage during bracket removal. The new adhesives are designed to be less invasive, allowing for easier and safer bracket removal without compromising the integrity of the tooth enamel.
Furthermore, these adhesives often incorporate antimicrobial properties, which help in maintaining oral hygiene. This is crucial for young patients who might struggle with consistent oral care practices. By inhibiting the growth of bacteria, these adhesives contribute to a healthier oral environment, reducing the risk of cavities and other dental issues during orthodontic treatment.
In summary, the latest adhesive innovations in orthodontics offer pediatric patients stronger, safer, and more hygienic treatment options. These advancements not only enhance the effectiveness of orthodontic procedures but also improve the overall experience for young patients, making their journey towards a healthier smile more comfortable and secure.
Certainly! Here's a short essay on the topic "Review of Clinical Studies and Research Supporting the Effectiveness of These Adhesive Innovations" within the broader context of "Adhesive Innovations for Long Lasting Bonds."
In the evolving landscape of medical and dental technologies, adhesive innovations have emerged as a cornerstone for achieving long-lasting bonds. These advancements are not merely theoretical; they are backed by a robust body of clinical studies and research that underscore their effectiveness. This essay delves into the empirical evidence supporting these adhesive innovations, highlighting their impact on patient outcomes and the longevity of medical and dental procedures.
The quest for superior adhesion in medical and dental fields has led to the development of novel adhesives that promise not only stronger bonds but also enhanced durability. Clinical studies have played a pivotal role in validating these claims. For instance, research conducted on the latest dental adhesives has demonstrated significant improvements in bond strength and resistance to degradation over time compared to traditional adhesives. These studies often employ rigorous methodologies, including in vitro tests, animal models, and human clinical trials, to assess the performance of new adhesive formulations.
One notable area of research focuses on the chemical composition of adhesives. Innovations in this space have introduced adhesives with enhanced chemical stability and compatibility with biological tissues. Clinical trials have shown that these new adhesives not only facilitate quicker healing processes but also reduce the incidence of complications such as inflammation and infection. Moreover, the incorporation of biocompatible materials has been a game-changer, ensuring that the adhesives are well-tolerated by the human body, further supporting their long-term effectiveness.
Another critical aspect of adhesive innovation is the ease of application and the reduction of procedure time. Clinical studies have highlighted that newer adhesives require less preparation time and offer more straightforward application processes, which is particularly beneficial in emergency situations or complex surgical procedures. The reduction in procedural time not only enhances patient comfort but also contributes to more efficient use of medical resources.
Furthermore, the environmental impact of adhesive materials has not been overlooked in recent research. Studies have explored the development of adhesives that are not only effective but also environmentally friendly. This includes the use of sustainable materials and the reduction of harmful chemicals, aligning with the broader goals of sustainable healthcare practices.
In conclusion, the review of clinical studies and research unequivocally supports the effectiveness of adhesive innovations in achieving long-lasting bonds. These advancements have not only improved the outcomes of medical and dental procedures but have also introduced more sustainable and patient-friendly solutions. As research continues to evolve, it is expected that adhesive technologies will further enhance their capabilities, offering even greater benefits to patients and healthcare providers alike.
When exploring new adhesives for orthodontic treatments in children, it's crucial to weigh both the benefits and potential challenges. While innovative adhesives promise stronger, longer-lasting bonds that could improve treatment outcomes and patient comfort, there are several considerations to keep in mind.
Firstly, the chemical composition of new adhesives must be thoroughly evaluated for biocompatibility. Ensuring that these materials are safe for prolonged exposure inside the mouth is paramount, especially in growing children whose bodies are more sensitive to foreign substances.
Secondly, the ease of application and removal is a significant factor. Orthodontists need adhesives that are easy to work with but also secure enough to withstand the forces exerted during orthodontic adjustments. If an adhesive is too difficult to apply or remove, it could lead to longer appointment times and increased discomfort for the patient.
Another challenge is the potential for allergic reactions. Some children may be sensitive or allergic to components within new adhesives, necessitating careful screening and perhaps limiting the use of certain products to only those patients who are not at risk.
Cost is also a consideration. New adhesives might be more expensive than traditional options, which could impact the overall cost of treatment. Families and insurance providers will need to consider whether the benefits of these new materials justify the additional expense.
Lastly, there's the issue of durability versus flexibility. While a strong bond is essential, the adhesive must also allow for some flexibility to accommodate the natural growth and movement of a child's teeth and jaw. An overly rigid adhesive could lead to complications or discomfort as the child's mouth continues to develop.
In conclusion, while adhesive innovations hold great promise for enhancing orthodontic treatments, it's essential to carefully consider these potential challenges and drawbacks. Balancing safety, efficacy, comfort, and cost will be key to successfully integrating new adhesives into pediatric orthodontic care.
In the evolving field of pediatric orthodontics, the quest for adhesive innovations that ensure long-lasting bonds is paramount. As children's teeth and oral environments present unique challenges compared to adults, the development of adhesives tailored specifically for young patients is crucial. Future directions in this area should focus on several key aspects to enhance both the effectiveness and safety of orthodontic treatments.
Firstly, there is a need for adhesives that can withstand the rigors of a child's active lifestyle. Children are more likely to engage in activities that put stress on their orthodontic appliances, such as playing sports or chewing on hard foods. Therefore, research should aim to develop adhesives with superior mechanical properties that can maintain strong bonds under such conditions. This might involve exploring new materials or modifying existing ones to increase their durability and resistance to wear.
Secondly, the biocompatibility of adhesives is a critical consideration, especially in pediatric applications. Children's bodies are still developing, and any material introduced into their mouths should be as safe as possible. Future research should investigate the use of biocompatible materials that minimize the risk of allergic reactions or other adverse effects. Additionally, the development of adhesives that release fluoride or other antimicrobial agents could help prevent tooth decay, a common concern during orthodontic treatment.
Another promising direction is the exploration of smart adhesives that can adapt to the changing oral environment of growing children. These adhesives could potentially respond to changes in pH levels or temperature, adjusting their properties to maintain a strong bond. Such innovations could revolutionize the way orthodontic treatments are conducted, making them more efficient and less invasive.
Furthermore, the ease of application and removal of adhesives is an area ripe for improvement. Pediatric patients often find the process of getting braces uncomfortable and intimidating. Developing adhesives that are easier to apply and remove could significantly enhance the patient experience, making treatments less stressful for both children and orthodontists.
In conclusion, the future of adhesive research and development in pediatric orthodontics holds exciting possibilities. By focusing on durability, biocompatibility, adaptability, and patient comfort, researchers can create adhesives that not only ensure long-lasting bonds but also improve the overall orthodontic experience for young patients. As technology advances, the integration of these innovations into clinical practice will be essential for the continued success and evolution of pediatric orthodontics.
Malocclusion | |
---|---|
![]() |
|
Malocclusion in 10-year-old girl | |
Specialty | Dentistry ![]() |
In orthodontics, a malocclusion is a misalignment or incorrect relation between the teeth of the upper and lower dental arches when they approach each other as the jaws close. The English-language term dates from 1864;[1] Edward Angle (1855–1930), the "father of modern orthodontics",[2][3][need quotation to verify] popularised it. The word derives from mal- 'incorrect' and occlusion 'the manner in which opposing teeth meet'.
The malocclusion classification is based on the relationship of the mesiobuccal cusp of the maxillary first molar and the buccal groove of the mandibular first molar. If this molar relationship exists, then the teeth can align into normal occlusion. According to Angle, malocclusion is any deviation of the occlusion from the ideal.[4] However, assessment for malocclusion should also take into account aesthetics and the impact on functionality. If these aspects are acceptable to the patient despite meeting the formal definition of malocclusion, then treatment may not be necessary. It is estimated that nearly 30% of the population have malocclusions that are categorised as severe and definitely benefit from orthodontic treatment.[5]
The aetiology of malocclusion is somewhat contentious, however, simply put it is multifactorial, with influences being both genetic[6][unreliable source?] and environmental.[7] Malocclusion is already present in one of the Skhul and Qafzeh hominin fossils and other prehistoric human skulls.[8][9] There are three generally accepted causative factors of malocclusion:
There is not one single cause of malocclusion, and when planning orthodontic treatment it is often helpful to consider the above factors and the impact they have played on malocclusion. These can also be influenced by oral habits and pressure resulting in malocclusion.[11][12]
In the active skeletal growth,[13] mouthbreathing, finger sucking, thumb sucking, pacifier sucking, onychophagia (nail biting), dermatophagia, pen biting, pencil biting, abnormal posture, deglutition disorders and other habits greatly influence the development of the face and dental arches.[14][15][16][17][18] Pacifier sucking habits are also correlated with otitis media.[19][20] Dental caries, periapical inflammation and tooth loss in the deciduous teeth can alter the correct permanent teeth eruptions.
Malocclusion can occur in primary and secondary dentition.
In primary dentition malocclusion is caused by:
In secondary dentition malocclusion is caused by:
Malocclusion is a common finding,[22][23] although it is not usually serious enough to require treatment. Those who have more severe malocclusions, which present as a part of craniofacial anomalies, may require orthodontic and sometimes surgical treatment (orthognathic surgery) to correct the problem.
The ultimate goal of orthodontic treatment is to achieve a stable, functional and aesthetic alignment of teeth which serves to better the patient's dental and total health.[24] The symptoms which arise as a result of malocclusion derive from a deficiency in one or more of these categories.[25]
The symptoms are as follows:
Malocclusions may be coupled with skeletal disharmony of the face, where the relations between the upper and lower jaws are not appropriate. Such skeletal disharmonies often distort sufferer's face shape, severely affect aesthetics of the face, and may be coupled with mastication or speech problems. Most skeletal malocclusions can only be treated by orthognathic surgery.[citation needed]
Depending on the sagittal relations of teeth and jaws, malocclusions can be divided mainly into three types according to Angle's classification system published 1899. However, there are also other conditions, e.g. crowding of teeth, not directly fitting into this classification.
Many authors have tried to modify or replace Angle's classification. This has resulted in many subtypes and new systems (see section below: Review of Angle's system of classes).
A deep bite (also known as a Type II Malocclusion) is a condition in which the upper teeth overlap the lower teeth, which can result in hard and soft tissue trauma, in addition to an effect on appearance.[26] It has been found to occur in 15–20% of the US population.[27]
An open bite is a condition characterised by a complete lack of overlap and occlusion between the upper and lower incisors.[28] In children, open bite can be caused by prolonged thumb sucking.[29] Patients often present with impaired speech and mastication.[30]
This is a vertical measurement of the degree of overlap between the maxillary incisors and the mandibular incisors. There are three features that are analysed in the classification of an overbite:
An average overbite is when the upper anterior teeth cover a third of the lower teeth. Covering less than this is described as ‘reduced’ and more than this is an ‘increased’ overbite. No overlap or contact is considered an ‘anterior open bite’.[25][31][32]
![]() |
This section may be too technical for most readers to understand.(September 2023)
|
Edward Angle, who is considered the father of modern orthodontics, was the first to classify malocclusion. He based his classifications on the relative position of the maxillary first molar.[33] According to Angle, the mesiobuccal cusp of the upper first molar should align with the buccal groove of the mandibular first molar. The teeth should all fit on a line of occlusion which, in the upper arch, is a smooth curve through the central fossae of the posterior teeth and cingulum of the canines and incisors, and in the lower arch, is a smooth curve through the buccal cusps of the posterior teeth and incisal edges of the anterior teeth. Any variations from this resulted in malocclusion types. It is also possible to have different classes of malocclusion on left and right sides.
A major disadvantage of Angle's system of classifying malocclusions is that it only considers two dimensions along a spatial axis in the sagittal plane in the terminal occlusion, but occlusion problems can be three-dimensional. It does not recognise deviations in other spatial axes, asymmetric deviations, functional faults and other therapy-related features.
Angle's classification system also lacks a theoretical basis; it is purely descriptive. Its much-discussed weaknesses include that it only considers static occlusion, it does not account for the development and causes (aetiology) of occlusion problems, and it disregards the proportions (or relationships in general) of teeth and face.[34] Thus, many attempts have been made to modify the Angle system or to replace it completely with a more efficient one,[35] but Angle's classification continues be popular mainly because of its simplicity and clarity.[citation needed]
Well-known modifications to Angle's classification date back to Martin Dewey (1915) and Benno Lischer (1912, 1933). Alternative systems have been suggested by, among others, Simon (1930, the first three-dimensional classification system), Jacob A. Salzmann (1950, with a classification system based on skeletal structures) and James L. Ackerman and William R. Proffit (1969).[36]
Besides the molar relationship, the British Standards Institute Classification also classifies malocclusion into incisor relationship and canine relationship.
Dental crowding is defined by the amount of space that would be required for the teeth to be in correct alignment. It is obtained in two ways: 1) by measuring the amount of space required and reducing this from calculating the space available via the width of the teeth, or 2) by measuring the degree of overlap of the teeth.
The following criterion is used:[25]
Genetic (inheritance) factors, extra teeth, lost teeth, impacted teeth, or abnormally shaped teeth have been cited as causes of crowding. Ill-fitting dental fillings, crowns, appliances, retainers, or braces as well as misalignment of jaw fractures after a severe injury are also known to cause crowding.[26] Tumors of the mouth and jaw, thumb sucking, tongue thrusting, pacifier use beyond age three, and prolonged use of a bottle have also been identified.[26]
Lack of masticatory stress during development can cause tooth overcrowding.[37][38] Children who chewed a hard resinous gum for two hours a day showed increased facial growth.[37] Experiments in animals have shown similar results. In an experiment on two groups of rock hyraxes fed hardened or softened versions of the same foods, the animals fed softer food had significantly narrower and shorter faces and thinner and shorter mandibles than animals fed hard food.[37][39][failed verification]
A 2016 review found that breastfeeding lowers the incidence of malocclusions developing later on in developing infants.[40]
During the transition to agriculture, the shape of the human mandible went through a series of changes. The mandible underwent a complex shape changes not matched by the teeth, leading to incongruity between the dental and mandibular form. These changes in human skulls may have been "driven by the decreasing bite forces required to chew the processed foods eaten once humans switched to growing different types of cereals, milking and herding animals about 10,000 years ago."[38][41]
Orthodontic management of the condition includes dental braces, lingual braces, clear aligners or palatal expanders.[42] Other treatments include the removal of one or more teeth and the repair of injured teeth. In some cases, surgery may be necessary.[43]
Malocclusion is often treated with orthodontics,[42] such as tooth extraction, clear aligners, or dental braces,[44] followed by growth modification in children or jaw surgery (orthognathic surgery) in adults. Surgical intervention is used only in rare occasions. This may include surgical reshaping to lengthen or shorten the jaw. Wires, plates, or screws may be used to secure the jaw bone, in a manner like the surgical stabilization of jaw fractures. Very few people have "perfect" alignment of their teeth with most problems being minor that do not require treatment.[37]
Crowding of the teeth is treated with orthodontics, often with tooth extraction, clear aligners, or dental braces, followed by growth modification in children or jaw surgery (orthognathic surgery) in adults. Surgery may be required on rare occasions. This may include surgical reshaping to lengthen or shorten the jaw (orthognathic surgery). Wires, plates, or screws may be used to secure the jaw bone, in a manner similar to the surgical stabilization of jaw fractures. Very few people have "perfect" alignment of their teeth. However, most problems are very minor and do not require treatment.[39]
While treatment is not crucial in class I malocclusions, in severe cases of crowding can be an indication for intervention. Studies indicate that tooth extraction can have benefits to correcting malocclusion in individuals.[45][46] Further research is needed as reoccurring crowding has been examined in other clinical trials.[45][47]
A few treatment options for class II malocclusions include:
Low- to moderate- quality evidence suggests that providing early orthodontic treatment for children with prominent upper front teeth (class II division 1) is more effective for reducing the incidence of incisal trauma than providing one course of orthodontic treatment in adolescence.[50] There do not appear to be any other advantages of providing early treatment when compared to late treatment.[50] Low-quality evidence suggests that, compared to no treatment, late treatment in adolescence with functional appliances is effective for reducing the prominence of upper front teeth.[50]
Treatment can be undertaken using orthodontic treatments using dental braces.[51] While treatment is carried out, there is no evidence from clinical trials to recommend or discourage any type of orthodontic treatment in children.[51] A 2018 Cochrane systematic review anticipated that the evidence base supporting treatment approaches is not likely to improve occlusion due to the low prevalence of the condition and the ethical difficulties in recruiting people to participate in a randomized controlled trials for treating this condition.[51]
The British Standard Institute (BSI) classify class III incisor relationship as the lower incisor edge lies anterior to the cingulum plateau of the upper incisors, with reduced or reversed over jet.[52] The skeletal facial deformity is characterized by mandibular prognathism, maxillary retrognathism or a combination of the two. This effects 3-8% of UK population with a higher incidence seen in Asia.[53]
One of the main reasons for correcting Class III malocclusion is aesthetics and function. This can have a psychological impact on the person with malocclusion resulting in speech and mastication problems as well. In mild class III cases, the patient is quite accepting of the aesthetics and the situation is monitored to observe the progression of skeletal growth.[54]
Maxillary and mandibular skeletal changes during prepubertal, pubertal and post pubertal stages show that class III malocclusion is established before the prepubertal stage.[55] One treatment option is the use of growth modification appliances such as the Chin Cap which has greatly improved the skeletal framework in the initial stages. However, majority of cases are shown to relapse into inherited class III malocclusion during the pubertal growth stage and when the appliance is removed after treatment.[55]
Another approach is to carry out orthognathic surgery, such as a bilateral sagittal split osteotomy (BSSO) which is indicated by horizontal mandibular excess. This involves surgically cutting through the mandible and moving the fragment forward or backwards for desired function and is supplemented with pre and post surgical orthodontics to ensure correct tooth relationship. Although the most common surgery of the mandible, it comes with several complications including: bleeding from inferior alveolar artery, unfavorable splits, condylar resorption, avascular necrosis and worsening of temporomandibular joint.[56]
Orthodontic camouflage can also be used in patients with mild skeletal discrepancies. This is a less invasive approach that uses orthodontic brackets to correct malocclusion and try to hide the skeletal discrepancy. Due to limitations of orthodontics, this option is more viable for patients who are not as concerned about the aesthetics of their facial appearance and are happy to address the malocclusion only, as well as avoiding the risks which come with orthognathic surgery. Cephalometric data can aid in the differentiation between the cases that benefit from ortho-surgical or orthodontic treatment only (camouflage); for instance, examining a large group of orthognathic patient with Class III malocclusions they had average ANB angle of -3.57° (95% CI, -3.92° to -3.21°). [57]
The most common corrective treatments available are fixed or removal appliances (such as dental braces), which may or may not require surgical intervention. At this time there is no robust evidence that treatment will be successful.[51]
An open bite malocclusion is when the upper teeth don't overlap the lower teeth. When this malocclusion occurs at the front teeth it is known as anterior open bite. An open bite is difficult to treat due to multifactorial causes, with relapse being a major concern. This is particularly so for an anterior open bite.[58] Therefore, it is important to carry out a thorough initial assessment in order to obtain a diagnosis to tailor a suitable treatment plan.[58] It is important to take into consideration any habitual risk factors, as this is crucial for a successful outcome without relapse. Treatment approach includes behavior changes, appliances and surgery. Treatment for adults include a combination of extractions, fixed appliances, intermaxillary elastics and orthognathic surgery.[30] For children, orthodontics is usually used to compensate for continued growth. With children with mixed dentition, the malocclusion may resolve on its own as the permanent teeth erupt. Furthermore, should the malocclusion be caused by childhood habits such as digit, thumb or pacifier sucking, it may result in resolution as the habit is stopped. Habit deterrent appliances may be used to help in breaking digit and thumb sucking habits. Other treatment options for patients who are still growing include functional appliances and headgear appliances.
Identifying the presence of tooth size discrepancies between the maxillary and mandibular arches is an important component of correct orthodontic diagnosis and treatment planning.
To establish appropriate alignment and occlusion, the size of upper and lower front teeth, or upper and lower teeth in general, needs to be proportional. Inter-arch tooth size discrepancy (ITSD) is defined as a disproportion in the mesio-distal dimensions of teeth of opposing dental arches. The prevalence is clinically significant among orthodontic patients and has been reported to range from 17% to 30%.[59]
Identifying inter-arch tooth size discrepancy (ITSD) before treatment begins allows the practitioner to develop the treatment plan in a way that will take ITSD into account. ITSD corrective treatment may entail demanding reduction (interproximal wear), increase (crowns and resins), or elimination (extractions) of dental mass prior to treatment finalization.[60]
Several methods have been used to determine ITSD. Of these methods the one most commonly used is the Bolton analysis. Bolton developed a method to calculate the ratio between the mesiodistal width of maxillary and mandibular teeth and stated that a correct and harmonious occlusion is possible only with adequate proportionality of tooth sizes.[60] Bolton's formula concludes that if in the anterior portion the ratio is less than 77.2% the lower teeth are too narrow, the upper teeth are too wide or there is a combination of both. If the ratio is higher than 77.2% either the lower teeth are too wide, the upper teeth are too narrow or there is a combination of both.[59]
Other kinds of malocclusions can be due to or horizontal, vertical, or transverse skeletal discrepancies, including skeletal asymmetries.
Increased vertical growth causes a long facial profile and commonly leads to an open bite malocclusion, while decreased vertical facial growth causes a short facial profile and is commonly associated with a deep bite malocclusion. However, there are many other more common causes for open bites (such as tongue thrusting and thumb sucking) and likewise for deep bites.[61][62][63]
The upper or lower jaw can be overgrown (macrognathia) or undergrown (micrognathia).[62][61][63] It has been reported that patients with micrognathia are also affected by retrognathia (abnormal posterior positioning of the mandible or maxilla relative to the facial structure).[62] These patients are majorly predisposed to a class II malocclusion. Mandibular macrognathia results in prognathism and predisposes patients to a class III malocclusion.[64]
Most malocclusion studies to date have focused on Class III malocclusions. Genetic studies for Class II and Class I malocclusion are more rare. An example of hereditary mandibular prognathism can be seen amongst the Hapsburg Royal family where one third of the affected individuals with severe class III malocclusion had one parent with a similar phenotype [65]
The frequent presentation of dental malocclusions in patients with craniofacial birth defects also supports a strong genetic aetiology. About 150 genes are associated with craniofacial conditions presenting with malocclusions.[66] Micrognathia is a commonly recurring craniofacial birth defect appearing among multiple syndromes.
For patients with severe malocclusions, corrective jaw surgery or orthognathic surgery may be carried out as a part of overall treatment, which can be seen in about 5% of the general population.[62][61][63]
cite book
: CS1 maint: location missing publisher (link) CS1 maint: others (link)
![]() A pediatrician examines a neonate.
|
|
Focus | Infants, Children, Adolescents, and Young Adults |
---|---|
Subdivisions | Paediatric cardiology, neonatology, critical care, pediatric oncology, hospital medicine, primary care, others (see below) |
Significant diseases | Congenital diseases, Infectious diseases, Childhood cancer, Mental disorders |
Significant tests | World Health Organization Child Growth Standards |
Specialist | Pediatrician |
Glossary | Glossary of medicine |
Pediatrics (American English) also spelled paediatrics (British English), is the branch of medicine that involves the medical care of infants, children, adolescents, and young adults. In the United Kingdom, pediatrics covers many of their youth until the age of 18.[1] The American Academy of Pediatrics recommends people seek pediatric care through the age of 21, but some pediatric subspecialists continue to care for adults up to 25.[2][3] Worldwide age limits of pediatrics have been trending upward year after year.[4] A medical doctor who specializes in this area is known as a pediatrician, or paediatrician. The word pediatrics and its cognates mean "healer of children", derived from the two Greek words: παá¿–ς (pais "child") and á¼°ατρÃÂÂÂÅ’ς (iatros "doctor, healer"). Pediatricians work in clinics, research centers, universities, general hospitals and children's hospitals, including those who practice pediatric subspecialties (e.g. neonatology requires resources available in a NICU).
The earliest mentions of child-specific medical problems appear in the Hippocratic Corpus, published in the fifth century B.C., and the famous Sacred Disease. These publications discussed topics such as childhood epilepsy and premature births. From the first to fourth centuries A.D., Greek philosophers and physicians Celsus, Soranus of Ephesus, Aretaeus, Galen, and Oribasius, also discussed specific illnesses affecting children in their works, such as rashes, epilepsy, and meningitis.[5] Already Hippocrates, Aristotle, Celsus, Soranus, and Galen[6] understood the differences in growing and maturing organisms that necessitated different treatment: Ex toto non sic pueri ut viri curari debent ("In general, boys should not be treated in the same way as men").[7] Some of the oldest traces of pediatrics can be discovered in Ancient India where children's doctors were called kumara bhrtya.[6]
Even though some pediatric works existed during this time, they were scarce and rarely published due to a lack of knowledge in pediatric medicine. Sushruta Samhita, an ayurvedic text composed during the sixth century BCE, contains the text about pediatrics.[8] Another ayurvedic text from this period is Kashyapa Samhita.[9][10] A second century AD manuscript by the Greek physician and gynecologist Soranus of Ephesus dealt with neonatal pediatrics.[11] Byzantine physicians Oribasius, Aëtius of Amida, Alexander Trallianus, and Paulus Aegineta contributed to the field.[6] The Byzantines also built brephotrophia (crêches).[6] Islamic Golden Age writers served as a bridge for Greco-Roman and Byzantine medicine and added ideas of their own, especially Haly Abbas, Yahya Serapion, Abulcasis, Avicenna, and Averroes. The Persian philosopher and physician al-Razi (865–925), sometimes called the father of pediatrics, published a monograph on pediatrics titled Diseases in Children.[12][13] Also among the first books about pediatrics was Libellus [Opusculum] de aegritudinibus et remediis infantium 1472 ("Little Book on Children Diseases and Treatment"), by the Italian pediatrician Paolo Bagellardo.[14][5] In sequence came Bartholomäus Metlinger's Ein Regiment der Jungerkinder 1473, Cornelius Roelans (1450–1525) no title Buchlein, or Latin compendium, 1483, and Heinrich von Louffenburg (1391–1460) Versehung des Leibs written in 1429 (published 1491), together form the Pediatric Incunabula, four great medical treatises on children's physiology and pathology.[6]
While more information about childhood diseases became available, there was little evidence that children received the same kind of medical care that adults did.[15] It was during the seventeenth and eighteenth centuries that medical experts started offering specialized care for children.[5] The Swedish physician Nils Rosén von Rosenstein (1706–1773) is considered to be the founder of modern pediatrics as a medical specialty,[16][17] while his work The diseases of children, and their remedies (1764) is considered to be "the first modern textbook on the subject".[18] However, it was not until the nineteenth century that medical professionals acknowledged pediatrics as a separate field of medicine. The first pediatric-specific publications appeared between the 1790s and the 1920s.[19]
The term pediatrics was first introduced in English in 1859 by Abraham Jacobi. In 1860, he became "the first dedicated professor of pediatrics in the world."[20] Jacobi is known as the father of American pediatrics because of his many contributions to the field.[21][22] He received his medical training in Germany and later practiced in New York City.[23]
The first generally accepted pediatric hospital is the Hôpital des Enfants Malades (French: Hospital for Sick Children), which opened in Paris in June 1802 on the site of a previous orphanage.[24] From its beginning, this famous hospital accepted patients up to the age of fifteen years,[25] and it continues to this day as the pediatric division of the Necker-Enfants Malades Hospital, created in 1920 by merging with the nearby Necker Hospital, founded in 1778.[26]
In other European countries, the Charité (a hospital founded in 1710) in Berlin established a separate Pediatric Pavilion in 1830, followed by similar institutions at Saint Petersburg in 1834, and at Vienna and Breslau (now WrocÅ‚aw), both in 1837. In 1852 Britain's first pediatric hospital, the Hospital for Sick Children, Great Ormond Street was founded by Charles West.[24] The first Children's hospital in Scotland opened in 1860 in Edinburgh.[27] In the US, the first similar institutions were the Children's Hospital of Philadelphia, which opened in 1855, and then Boston Children's Hospital (1869).[28] Subspecialties in pediatrics were created at the Harriet Lane Home at Johns Hopkins by Edwards A. Park.[29]
The body size differences are paralleled by maturation changes. The smaller body of an infant or neonate is substantially different physiologically from that of an adult. Congenital defects, genetic variance, and developmental issues are of greater concern to pediatricians than they often are to adult physicians. A common adage is that children are not simply "little adults". The clinician must take into account the immature physiology of the infant or child when considering symptoms, prescribing medications, and diagnosing illnesses.[30]
Pediatric physiology directly impacts the pharmacokinetic properties of drugs that enter the body. The absorption, distribution, metabolism, and elimination of medications differ between developing children and grown adults.[30][31][32] Despite completed studies and reviews, continual research is needed to better understand how these factors should affect the decisions of healthcare providers when prescribing and administering medications to the pediatric population.[30]
Many drug absorption differences between pediatric and adult populations revolve around the stomach. Neonates and young infants have increased stomach pH due to decreased acid secretion, thereby creating a more basic environment for drugs that are taken by mouth.[31][30][32] Acid is essential to degrading certain oral drugs before systemic absorption. Therefore, the absorption of these drugs in children is greater than in adults due to decreased breakdown and increased preservation in a less acidic gastric space.[31]
Children also have an extended rate of gastric emptying, which slows the rate of drug absorption.[31][32]
Drug absorption also depends on specific enzymes that come in contact with the oral drug as it travels through the body. Supply of these enzymes increase as children continue to develop their gastrointestinal tract.[31][32] Pediatric patients have underdeveloped proteins, which leads to decreased metabolism and increased serum concentrations of specific drugs. However, prodrugs experience the opposite effect because enzymes are necessary for allowing their active form to enter systemic circulation.[31]
Percentage of total body water and extracellular fluid volume both decrease as children grow and develop with time. Pediatric patients thus have a larger volume of distribution than adults, which directly affects the dosing of hydrophilic drugs such as beta-lactam antibiotics like ampicillin.[31] Thus, these drugs are administered at greater weight-based doses or with adjusted dosing intervals in children to account for this key difference in body composition.[31][30]
Infants and neonates also have fewer plasma proteins. Thus, highly protein-bound drugs have fewer opportunities for protein binding, leading to increased distribution.[30]
Drug metabolism primarily occurs via enzymes in the liver and can vary according to which specific enzymes are affected in a specific stage of development.[31] Phase I and Phase II enzymes have different rates of maturation and development, depending on their specific mechanism of action (i.e. oxidation, hydrolysis, acetylation, methylation, etc.). Enzyme capacity, clearance, and half-life are all factors that contribute to metabolism differences between children and adults.[31][32] Drug metabolism can even differ within the pediatric population, separating neonates and infants from young children.[30]
Drug elimination is primarily facilitated via the liver and kidneys.[31] In infants and young children, the larger relative size of their kidneys leads to increased renal clearance of medications that are eliminated through urine.[32] In preterm neonates and infants, their kidneys are slower to mature and thus are unable to clear as much drug as fully developed kidneys. This can cause unwanted drug build-up, which is why it is important to consider lower doses and greater dosing intervals for this population.[30][31] Diseases that negatively affect kidney function can also have the same effect and thus warrant similar considerations.[31]
A major difference between the practice of pediatric and adult medicine is that children, in most jurisdictions and with certain exceptions, cannot make decisions for themselves. The issues of guardianship, privacy, legal responsibility, and informed consent must always be considered in every pediatric procedure. Pediatricians often have to treat the parents and sometimes, the family, rather than just the child. Adolescents are in their own legal class, having rights to their own health care decisions in certain circumstances. The concept of legal consent combined with the non-legal consent (assent) of the child when considering treatment options, especially in the face of conditions with poor prognosis or complicated and painful procedures/surgeries, means the pediatrician must take into account the desires of many people, in addition to those of the patient.[citation needed]
The term autonomy is traceable to ethical theory and law, where it states that autonomous individuals can make decisions based on their own logic.[33] Hippocrates was the first to use the term in a medical setting. He created a code of ethics for doctors called the Hippocratic Oath that highlighted the importance of putting patients' interests first, making autonomy for patients a top priority in health care.[34]
In ancient times, society did not view pediatric medicine as essential or scientific.[35] Experts considered professional medicine unsuitable for treating children. Children also had no rights. Fathers regarded their children as property, so their children's health decisions were entrusted to them.[5] As a result, mothers, midwives, "wise women", and general practitioners treated the children instead of doctors.[35] Since mothers could not rely on professional medicine to take care of their children, they developed their own methods, such as using alkaline soda ash to remove the vernix at birth and treating teething pain with opium or wine. The absence of proper pediatric care, rights, and laws in health care to prioritize children's health led to many of their deaths. Ancient Greeks and Romans sometimes even killed healthy female babies and infants with deformities since they had no adequate medical treatment and no laws prohibiting infanticide.[5]
In the twentieth century, medical experts began to put more emphasis on children's rights. In 1989, in the United Nations Rights of the Child Convention, medical experts developed the Best Interest Standard of Child to prioritize children's rights and best interests. This event marked the onset of pediatric autonomy. In 1995, the American Academy of Pediatrics (AAP) finally acknowledged the Best Interest Standard of a Child as an ethical principle for pediatric decision-making, and it is still being used today.[34]
The majority of the time, parents have the authority to decide what happens to their child. Philosopher John Locke argued that it is the responsibility of parents to raise their children and that God gave them this authority. In modern society, Jeffrey Blustein, modern philosopher and author of the book Parents and Children: The Ethics of Family, argues that parental authority is granted because the child requires parents to satisfy their needs. He believes that parental autonomy is more about parents providing good care for their children and treating them with respect than parents having rights.[36] The researcher Kyriakos Martakis, MD, MSc, explains that research shows parental influence negatively affects children's ability to form autonomy. However, involving children in the decision-making process allows children to develop their cognitive skills and create their own opinions and, thus, decisions about their health. Parental authority affects the degree of autonomy the child patient has. As a result, in Argentina, the new National Civil and Commercial Code has enacted various changes to the healthcare system to encourage children and adolescents to develop autonomy. It has become more crucial to let children take accountability for their own health decisions.[37]
In most cases, the pediatrician, parent, and child work as a team to make the best possible medical decision. The pediatrician has the right to intervene for the child's welfare and seek advice from an ethics committee. However, in recent studies, authors have denied that complete autonomy is present in pediatric healthcare. The same moral standards should apply to children as they do to adults. In support of this idea is the concept of paternalism, which negates autonomy when it is in the patient's interests. This concept aims to keep the child's best interests in mind regarding autonomy. Pediatricians can interact with patients and help them make decisions that will benefit them, thus enhancing their autonomy. However, radical theories that question a child's moral worth continue to be debated today.[37] Authors often question whether the treatment and equality of a child and an adult should be the same. Author Tamar Schapiro notes that children need nurturing and cannot exercise the same level of authority as adults.[38] Hence, continuing the discussion on whether children are capable of making important health decisions until this day.
According to the Subcommittee of Clinical Ethics of the Argentinean Pediatric Society (SAP), children can understand moral feelings at all ages and can make reasonable decisions based on those feelings. Therefore, children and teens are deemed capable of making their own health decisions when they reach the age of 13. Recently, studies made on the decision-making of children have challenged that age to be 12.[37]
Technology has made several modern advancements that contribute to the future development of child autonomy, for example, unsolicited findings (U.F.s) of pediatric exome sequencing. They are findings based on pediatric exome sequencing that explain in greater detail the intellectual disability of a child and predict to what extent it will affect the child in the future. Genetic and intellectual disorders in children make them incapable of making moral decisions, so people look down upon this kind of testing because the child's future autonomy is at risk. It is still in question whether parents should request these types of testing for their children. Medical experts argue that it could endanger the autonomous rights the child will possess in the future. However, the parents contend that genetic testing would benefit the welfare of their children since it would allow them to make better health care decisions.[39] Exome sequencing for children and the decision to grant parents the right to request them is a medically ethical issue that many still debate today.
![]() |
The examples and perspective in this section deal primarily with United States and do not represent a worldwide view of the subject.(September 2019)
|
Aspiring medical students will need 4 years of undergraduate courses at a college or university, which will get them a BS, BA or other bachelor's degree. After completing college, future pediatricians will need to attend 4 years of medical school (MD/DO/MBBS) and later do 3 more years of residency training, the first year of which is called "internship." After completing the 3 years of residency, physicians are eligible to become certified in pediatrics by passing a rigorous test that deals with medical conditions related to young children.[citation needed]
In high school, future pediatricians are required to take basic science classes such as biology, chemistry, physics, algebra, geometry, and calculus. It is also advisable to learn a foreign language (preferably Spanish in the United States) and be involved in high school organizations and extracurricular activities. After high school, college students simply need to fulfill the basic science course requirements that most medical schools recommend and will need to prepare to take the MCAT (Medical College Admission Test) in their junior or early senior year in college. Once attending medical school, student courses will focus on basic medical sciences like human anatomy, physiology, chemistry, etc., for the first three years, the second year of which is when medical students start to get hands-on experience with actual patients.[40]
![]() |
|
Occupation | |
---|---|
Names |
|
Occupation type
|
Specialty |
Activity sectors
|
Medicine |
Description | |
Education required
|
|
Fields of
employment |
Hospitals, Clinics |
The training of pediatricians varies considerably across the world. Depending on jurisdiction and university, a medical degree course may be either undergraduate-entry or graduate-entry. The former commonly takes five or six years and has been usual in the Commonwealth. Entrants to graduate-entry courses (as in the US), usually lasting four or five years, have previously completed a three- or four-year university degree, commonly but by no means always in sciences. Medical graduates hold a degree specific to the country and university in and from which they graduated. This degree qualifies that medical practitioner to become licensed or registered under the laws of that particular country, and sometimes of several countries, subject to requirements for "internship" or "conditional registration".
Pediatricians must undertake further training in their chosen field. This may take from four to eleven or more years depending on jurisdiction and the degree of specialization.
In the United States, a medical school graduate wishing to specialize in pediatrics must undergo a three-year residency composed of outpatient, inpatient, and critical care rotations. Subspecialties within pediatrics require further training in the form of 3-year fellowships. Subspecialties include critical care, gastroenterology, neurology, infectious disease, hematology/oncology, rheumatology, pulmonology, child abuse, emergency medicine, endocrinology, neonatology, and others.[41]
In most jurisdictions, entry-level degrees are common to all branches of the medical profession, but in some jurisdictions, specialization in pediatrics may begin before completion of this degree. In some jurisdictions, pediatric training is begun immediately following the completion of entry-level training. In other jurisdictions, junior medical doctors must undertake generalist (unstreamed) training for a number of years before commencing pediatric (or any other) specialization. Specialist training is often largely under the control of 'pediatric organizations (see below) rather than universities and depends on the jurisdiction.
Subspecialties of pediatrics include:
(not an exhaustive list)
(not an exhaustive list)
By writing a monograph on 'Diseases in Children' he may also be looked upon as the father of paediatrics.
Rosen von Rosenstein.
Redirect to: