Certainly!
Effective clinical records in orthodontics are essential for providing comprehensive and informed care to patients. These records not only document the patient's orthodontic journey but also serve as a vital communication tool among dental professionals, ensuring continuity of care. Here's an overview of the key components that constitute effective clinical records in orthodontics.
Firstly, patient identification details are paramount. This includes the patient's full name, date of birth, and a unique identification number. These details ensure that the records are accurately attributed to the correct individual, preventing any mix-ups or errors in treatment.
Next, a thorough medical and dental history is crucial. This section should encompass any relevant medical conditions, allergies, medications, and previous dental treatments. Understanding a patient's medical background helps in identifying potential contraindications or considerations for orthodontic treatment.
The clinical examination findings form another critical component. This includes detailed notes on the patient's oral health status, such as the condition of their teeth, gums, and jaw alignment. Diagnostic records, such as photographs, radiographs, and study models, should be meticulously documented and stored. These records provide a visual and tangible representation of the patient's dental structure and are invaluable for treatment planning and progress assessment.
Treatment plans and objectives should be clearly outlined in the records. This involves detailing the proposed orthodontic interventions, expected outcomes, and any alternative treatment options discussed with the patient. It's important that patients are well-informed about their treatment plan, and these records serve as a reference for both the clinician and the patient.
Progress notes are essential for tracking the patient's journey through treatment. These notes should document each visit, including any adjustments made to the treatment plan, patient compliance, and any observed changes in the patient's oral health. Regular updates in the progress notes ensure that the treatment remains on track and any deviations can be promptly addressed.
Finally, the records should include post-treatment evaluations and any instructions for retention or follow-up care. This ensures that the patient understands the importance of maintaining their new smile and any necessary steps to prevent relapse.
In conclusion, effective clinical records in orthodontics are a blend of detailed documentation, visual aids, and clear communication. They not only facilitate high-quality patient care but also serve as a legal and professional record of the treatment provided.
In the realm of healthcare, the integration of patient history and initial assessments plays a pivotal role in shaping effective treatment plans. These elements serve as the cornerstone for clinicians to deliver personalized and efficient care.
Patient history encompasses a detailed account of an individual's past medical experiences, including previous illnesses, surgeries, medications, allergies, and family medical history. This wealth of information provides clinicians with invaluable insights into the patient's health trajectory, enabling them to identify patterns, predict potential complications, and tailor interventions accordingly. For instance, a patient with a history of adverse reactions to certain medications may require alternative treatments to avoid adverse effects.
Moreover, the initial assessment conducted upon a patient's admission or consultation serves as a critical juncture for gathering pertinent information about their current health status. Through a comprehensive evaluation of symptoms, physical examination, and diagnostic tests, clinicians can ascertain the nature and severity of the patient's condition. This assessment not only aids in establishing an accurate diagnosis but also informs the selection of appropriate therapeutic modalities.
Furthermore, the amalgamation of patient history and initial assessment fosters a holistic approach to care delivery. By synthesizing past experiences with present circumstances, clinicians can devise treatment plans that address the unique needs and preferences of each patient. This personalized approach not only enhances patient satisfaction but also optimizes clinical outcomes by ensuring that interventions are tailored to the individual's specific requirements.
In conclusion, the role of patient history and initial assessment in informing treatment plans cannot be overstated. These components serve as the bedrock upon which effective care is built, enabling clinicians to deliver targeted interventions that promote optimal patient outcomes. As healthcare continues to evolve, the integration of these elements will remain paramount in ensuring the delivery of high-quality, patient-centered care.
When it comes to providing effective and personalized healthcare, the importance of thorough and organized clinical records cannot be overstated. One critical component of comprehensive clinical documentation is the inclusion of diagnostic records, which serve as a cornerstone for informed decision-making and tailored treatment plans. These records, which encompass photographs, radiographs, and models, offer a multi-dimensional view of a patient's condition, facilitating a deeper understanding and more accurate diagnosis.
Photographs play a crucial role in documenting the patient's condition at various stages of treatment. They provide a visual representation that can be invaluable for tracking changes over time, comparing pre- and post-treatment states, and communicating complex conditions to other healthcare professionals. For example, in dermatology, photographs can capture the progression of skin conditions or the effects of treatment, offering a clear and immediate visual assessment that complements written notes.
Radiographs, or X-rays, are another essential element of diagnostic documentation. They allow healthcare providers to visualize internal structures that are not visible to the naked eye. Whether it's identifying fractures, evaluating the alignment of bones, or assessing the extent of dental work needed, radiographs provide critical information that guides treatment decisions. In dentistry, for instance, radiographs are indispensable for diagnosing issues beneath the gum line, planning orthodontic treatments, or evaluating the success of previous interventions.
Models, particularly in fields like dentistry and orthodontics, offer a tangible representation of a patient's anatomy. These physical or digital models allow for a three-dimensional assessment of the patient's condition, enabling healthcare providers to plan treatments with precision. For orthodontists, models of teeth are crucial for designing braces or other corrective appliances, ensuring they fit perfectly and address the specific needs of the patient.
The integration of these diagnostic records into clinical documentation enhances the quality of care by providing a comprehensive view of the patient's condition. It enables healthcare providers to make well-informed decisions, tailor treatments to individual needs, and monitor progress effectively. Moreover, these records facilitate communication among healthcare professionals, ensuring that all members of the care team have access to the same detailed information, leading to more coordinated and effective care.
In conclusion, the documentation of diagnostic records, including photographs, radiographs, and models, is a vital aspect of clinical records that inform effective care. By offering a detailed and multi-faceted view of a patient's condition, these records enable healthcare providers to deliver personalized, evidence-based treatments that meet the unique needs of each patient. As healthcare continues to evolve, the importance of comprehensive and detailed clinical documentation will only grow, underscoring the need for ongoing investment in this critical area.
Tracking growth and development through serial records is a crucial practice in healthcare that significantly informs effective care. Serial records refer to a series of documented observations and assessments of a patient's growth, development, and overall health status over time. These records are not only essential for monitoring a child's physical growth, such as height and weight, but also for tracking developmental milestones, behavioral patterns, and responses to various treatments or interventions.
The importance of serial records lies in their ability to provide a comprehensive overview of a patient's health trajectory. By systematically recording and analyzing data at regular intervals, healthcare providers can identify trends, detect potential issues early, and make informed decisions about the patient's care. For instance, a slight deviation from the expected growth curve might indicate underlying health problems that require further investigation. Similarly, delays in achieving developmental milestones could signal the need for early intervention services.
Moreover, serial records facilitate personalized care. Each patient is unique, and their growth and development patterns can vary significantly. By having detailed, longitudinal records, healthcare providers can tailor their approach to meet the specific needs of each patient. This personalized care can lead to better health outcomes and a more effective use of healthcare resources.
In addition to informing clinical decisions, serial records also play a vital role in patient and family education. When families see the documented progress of their child's growth and development, it can enhance their understanding of the child's health status and the importance of adhering to recommended care plans. It also empowers families to be active participants in their child's healthcare journey.
Furthermore, serial records are invaluable for research and public health initiatives. Aggregated data from serial records can help identify broader trends in growth and development, inform public health policies, and contribute to the development of new treatments and interventions.
In conclusion, tracking growth and development through serial records is a fundamental aspect of clinical practice that enhances the quality of care. It allows for early detection of issues, facilitates personalized care, educates patients and families, and contributes to broader health research and policy. As such, it is an indispensable tool for healthcare providers dedicated to delivering effective, evidence-based care.
In the realm of healthcare, the meticulous recording of treatment progress and modifications within clinical records plays a pivotal role in informing effective care. This practice ensures that healthcare providers have a comprehensive understanding of a patient's journey through their treatment plan, facilitating informed decision-making and personalized care.
Recording treatment progress involves documenting the patient's response to interventions, whether pharmacological, surgical, therapeutic, or otherwise. This documentation should include detailed observations of the patient's physical, emotional, and psychological state before, during, and after treatment. It is essential to note any changes in symptoms, side effects, or complications that arise, as these can significantly influence the course of treatment.
Moreover, the recording of modifications to the treatment plan is equally critical. As patients respond uniquely to treatments, adjustments may be necessary to optimize outcomes. These modifications could range from dosage changes in medications to alterations in the frequency or type of therapy. Documenting these changes not only helps in tracking the effectiveness of the revised plan but also provides a clear rationale for decisions made, which is invaluable for future reference and for other healthcare professionals involved in the patient's care.
Effective clinical records that inform care are characterized by their clarity, consistency, and comprehensiveness. They should be easily accessible to all members of the healthcare team, promoting a collaborative approach to patient care. Furthermore, these records serve as a communication tool between healthcare providers, ensuring that all are aligned with the patient's current treatment plan and any modifications thereto.
In conclusion, the careful recording of treatment progress and modifications within clinical records is fundamental to delivering effective, patient-centered care. It enhances the continuity of care, supports evidence-based practice, and ultimately contributes to improved patient outcomes. As healthcare continues to evolve, the importance of these records in informing care cannot be overstated.
Communication with patients and parents through clinical records is a vital component of effective healthcare. Clinical records, also known as medical records, serve as the primary documentation of a patient's medical history, diagnoses, treatments, and outcomes. They are not just repositories of information but also dynamic tools that facilitate communication between healthcare providers, patients, and their families.
Firstly, clinical records provide a comprehensive overview of a patient's health status. This is particularly important in a multidisciplinary setting where different healthcare professionals may be involved in a patient's care. By having access to the same set of records, all members of the healthcare team can make informed decisions and provide coordinated care. For instance, a pediatrician reviewing a child's records can quickly understand the context of their illness, previous treatments, and any allergies, allowing for more personalized and effective care.
Secondly, clinical records enhance patient engagement. When patients and their parents have access to these records, they become more informed about their health conditions and the treatments they are receiving. This transparency fosters a sense of trust and collaboration between the patient, their family, and the healthcare provider. For example, a parent might review their child's growth chart and discuss any concerns about their development with the pediatrician, leading to early identification of potential issues.
Moreover, clinical records can be a powerful tool for education. Healthcare providers can use these records to explain complex medical concepts to patients and their families in a more tangible way. For instance, showing a parent a graph of their child's blood sugar levels over time can help them understand the importance of adhering to a diabetes management plan.
Additionally, clinical records play a crucial role in ensuring continuity of care. When a patient transitions between different healthcare settings or providers, having a detailed and up-to-date record ensures that no critical information is lost. This is especially important for patients with chronic conditions who may see multiple specialists. A well-maintained record ensures that all providers are on the same page regarding the patient's care plan.
Lastly, the integration of technology in clinical records has further enhanced their utility. Electronic Health Records (EHRs) allow for real-time updates and easier access to information. Patients and parents can often access these records through patient portals, enabling them to review lab results, appointment schedules, and even communicate directly with their healthcare providers.
In conclusion, effective communication through clinical records is essential for delivering high-quality care. It not only ensures that healthcare providers are well-informed but also empowers patients and their families to take an active role in their healthcare journey. By leveraging the information contained within these records, healthcare providers can offer more personalized, coordinated, and transparent care, ultimately leading to better health outcomes.
Maintaining orthodontic clinical records is a crucial aspect of providing effective and ethical care to patients. This process not only ensures that the treatment provided is of high quality but also protects both the patient and the practitioner from potential legal and ethical disputes. Here, we delve into the importance of legal and ethical considerations in maintaining these records.
Firstly, legal considerations are paramount in the maintenance of orthodontic clinical records. These records serve as a detailed account of the patient's treatment history, including diagnoses, treatment plans, progress notes, and any changes made along the way. In the event of a legal dispute, such as allegations of malpractice, these records can be instrumental in demonstrating that the practitioner adhered to the standard of care expected in the field. Moreover, they provide a clear timeline of events, which can be crucial in defending against claims of negligence.
Ethical considerations also play a significant role in the maintenance of orthodontic clinical records. Ethically, practitioners are obligated to ensure that patient information is accurate, up-to-date, and secure. This not only fosters trust between the patient and the practitioner but also upholds the integrity of the profession. Patients must be informed about what information is being recorded and how it will be used, ensuring transparency and consent. Additionally, ethical practice demands that these records are kept confidential, with access limited to authorized personnel only, thereby protecting patient privacy.
In conclusion, the maintenance of orthodontic clinical records is not merely a bureaucratic requirement but a fundamental aspect of providing ethical and effective care. By adhering to both legal and ethical standards, practitioners can ensure that they are providing the best possible care to their patients while also protecting themselves from potential legal challenges. This dual commitment to legal compliance and ethical practice not only enhances patient care but also contributes to the overall trust and credibility of the orthodontic profession.
Tooth | |
---|---|
![]() A chimpanzee displaying his teeth
|
|
Details | |
Identifiers | |
Latin | dens |
MeSH | D014070 |
FMA | 12516 |
Anatomical terminology
[edit on Wikidata]
|
A tooth (pl.: teeth) is a hard, calcified structure found in the jaws (or mouths) of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tearing food, for defensive purposes, to intimidate other animals often including their own, or to carry prey or their young. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of multiple tissues of varying density and hardness that originate from the outermost embryonic germ layer, the ectoderm.
The general structure of teeth is similar across the vertebrates, although there is considerable variation in their form and position. The teeth of mammals have deep roots, and this pattern is also found in some fish, and in crocodilians. In most teleost fish, however, the teeth are attached to the outer surface of the bone, while in lizards they are attached to the inner surface of the jaw by one side. In cartilaginous fish, such as sharks, the teeth are attached by tough ligaments to the hoops of cartilage that form the jaw.[1]
Monophyodonts are animals that develop only one set of teeth, while diphyodonts grow an early set of deciduous teeth and a later set of permanent or "adult" teeth. Polyphyodonts grow many sets of teeth. For example, sharks, grow a new set of teeth every two weeks to replace worn teeth. Most extant mammals including humans are diphyodonts, but there are exceptions including elephants, kangaroos, and manatees, all of which are polyphyodonts.
Rodent incisors grow and wear away continually through gnawing, which helps maintain relatively constant length. The industry of the beaver is due in part to this qualification. Some rodents, such as voles and guinea pigs (but not mice), as well as lagomorpha (rabbits, hares and pikas), have continuously growing molars in addition to incisors.[2][3] Also, tusks (in tusked mammals) grow almost throughout life.[4]
Teeth are not always attached to the jaw, as they are in mammals. In many reptiles and fish, teeth are attached to the palate or to the floor of the mouth, forming additional rows inside those on the jaws proper. Some teleosts even have teeth in the pharynx. While not true teeth in the usual sense, the dermal denticles of sharks are almost identical in structure and are likely to have the same evolutionary origin. Indeed, teeth appear to have first evolved in sharks, and are not found in the more primitive jawless fish – while lampreys do have tooth-like structures on the tongue, these are in fact, composed of keratin, not of dentine or enamel, and bear no relationship to true teeth.[1] Though "modern" teeth-like structures with dentine and enamel have been found in late conodonts, they are now supposed to have evolved independently of later vertebrates' teeth.[5][6]
Living amphibians typically have small teeth, or none at all, since they commonly feed only on soft foods. In reptiles, teeth are generally simple and conical in shape, although there is some variation between species, most notably the venom-injecting fangs of snakes. The pattern of incisors, canines, premolars and molars is found only in mammals, and to varying extents, in their evolutionary ancestors. The numbers of these types of teeth vary greatly between species; zoologists use a standardised dental formula to describe the precise pattern in any given group.[1]
The word tooth comes from Proto-Germanic *tanþs, derived from the Proto-Indo-European *hâ‚ÂÂÂÂdent-, which was composed of the root *hâ‚ÂÂÂÂed- 'to eat' plus the active participle suffix *-nt, therefore literally meaning 'that which eats'.[7]
The irregular plural form teeth is the result of Germanic umlaut whereby vowels immediately preceding a high vocalic in the following syllable were raised. As the nominative plural ending of the Proto-Germanic consonant stems (to which *tanþs belonged) was *-iz, the root vowel in the plural form *tanþiz (changed by this point to *tÄ…Ì„þi via unrelated phonological processes) was raised to /œÃƒÆ’ƒâ€¹Ã‚ÂÂÂ/, and later unrounded to /eËÂÂÂÂ/, resulting in the tÃ…ÂÂÂÂþ/tÄ“þ alternation attested from Old English. Cf. also Old English bÃ…ÂÂÂÂc/bÄ“Ä‹ 'book/books' and 'mÅ«s/mȳs' 'mouse/mice', from Proto-Germanic *bÃ…ÂÂÂÂks/bÃ…ÂÂÂÂkiz and *mÅ«s/mÅ«siz respectively.
Cognate with Latin dÄ“ns, Greek á½€δοÃÂÂÂÂÂÂÂς (odous), and Sanskrit dát.
Teeth are assumed to have evolved either from ectoderm denticles (scales, much like those on the skin of sharks) that folded and integrated into the mouth (called the "outside–in" theory), or from endoderm pharyngeal teeth (primarily formed in the pharynx of jawless vertebrates) (the "inside–out" theory). In addition, there is another theory stating that neural crest gene regulatory network, and neural crest-derived ectomesenchyme are the key to generate teeth (with any epithelium, either ectoderm or endoderm).[4][8]
The genes governing tooth development in mammals are homologous to those involved in the development of fish scales.[9] Study of a tooth plate of a fossil of the extinct fish Romundina stellina showed that the teeth and scales were made of the same tissues, also found in mammal teeth, lending support to the theory that teeth evolved as a modification of scales.[10]
Teeth are among the most distinctive (and long-lasting) features of mammal species. Paleontologists use teeth to identify fossil species and determine their relationships. The shape of the animal's teeth are related to its diet. For example, plant matter is hard to digest, so herbivores have many molars for chewing and grinding. Carnivores, on the other hand, have canine teeth to kill prey and to tear meat.
Mammals, in general, are diphyodont, meaning that they develop two sets of teeth. In humans, the first set (the "baby", "milk", "primary" or "deciduous" set) normally starts to appear at about six months of age, although some babies are born with one or more visible teeth, known as neonatal teeth. Normal tooth eruption at about six months is known as teething and can be painful. Kangaroos, elephants, and manatees are unusual among mammals because they are polyphyodonts.
In aardvarks, teeth lack enamel and have many pulp tubules, hence the name of the order Tubulidentata.[11]
In dogs, the teeth are less likely than humans to form dental cavities because of the very high pH of dog saliva, which prevents enamel from demineralizing.[12] Sometimes called cuspids, these teeth are shaped like points (cusps) and are used for tearing and grasping food.[13]
Like human teeth, whale teeth have polyp-like protrusions located on the root surface of the tooth. These polyps are made of cementum in both species, but in human teeth, the protrusions are located on the outside of the root, while in whales the nodule is located on the inside of the pulp chamber. While the roots of human teeth are made of cementum on the outer surface, whales have cementum on the entire surface of the tooth with a very small layer of enamel at the tip. This small enamel layer is only seen in older whales where the cementum has been worn away to show the underlying enamel.[14]
The toothed whale is a parvorder of the cetaceans characterized by having teeth. The teeth differ considerably among the species. They may be numerous, with some dolphins bearing over 100 teeth in their jaws. On the other hand, the narwhals have a giant unicorn-like tusk, which is a tooth containing millions of sensory pathways and used for sensing during feeding, navigation, and mating. It is the most neurologically complex tooth known. Beaked whales are almost toothless, with only bizarre teeth found in males. These teeth may be used for feeding but also for demonstrating aggression and showmanship.
In humans (and most other primates), there are usually 20 primary (also "baby" or "milk") teeth, and later up to 32 permanent teeth. Four of these 32 may be third molars or wisdom teeth, although these are not present in all adults, and may be removed surgically later in life.[15]
Among primary teeth, 10 of them are usually found in the maxilla (i.e. upper jaw) and the other 10 in the mandible (i.e. lower jaw). Among permanent teeth, 16 are found in the maxilla and the other 16 in the mandible. Most of the teeth have uniquely distinguishing features.
An adult horse has between 36 and 44 teeth. The enamel and dentin layers of horse teeth are intertwined.[16] All horses have 12 premolars, 12 molars, and 12 incisors.[17] Generally, all male equines also have four canine teeth (called tushes) between the molars and incisors. However, few female horses (less than 28%) have canines, and those that do usually have only one or two, which many times are only partially erupted.[18] A few horses have one to four wolf teeth, which are vestigial premolars, with most of those having only one or two. They are equally common in male and female horses and much more likely to be on the upper jaw. If present these can cause problems as they can interfere with the horse's bit contact. Therefore, wolf teeth are commonly removed.[17]
Horse teeth can be used to estimate the animal's age. Between birth and five years, age can be closely estimated by observing the eruption pattern on milk teeth and then permanent teeth. By age five, all permanent teeth have usually erupted. The horse is then said to have a "full" mouth. After the age of five, age can only be conjectured by studying the wear patterns on the incisors, shape, the angle at which the incisors meet, and other factors. The wear of teeth may also be affected by diet, natural abnormalities, and cribbing. Two horses of the same age may have different wear patterns.
A horse's incisors, premolars, and molars, once fully developed, continue to erupt as the grinding surface is worn down through chewing. A young adult horse will have teeth, which are 110–130 mm (4.5–5 inches) long, with the majority of the crown remaining below the gumline in the dental socket. The rest of the tooth will slowly emerge from the jaw, erupting about 3 mm (1⁄8 in) each year, as the horse ages. When the animal reaches old age, the crowns of the teeth are very short and the teeth are often lost altogether. Very old horses, if lacking molars, may need to have their fodder ground up and soaked in water to create a soft mush for them to eat in order to obtain adequate nutrition.
Elephants' tusks are specialized incisors for digging food up and fighting. Some elephant teeth are similar to those in manatees, and elephants are believed to have undergone an aquatic phase in their evolution.
At birth, elephants have a total of 28 molar plate-like grinding teeth not including the tusks. These are organized into four sets of seven successively larger teeth which the elephant will slowly wear through during its lifetime of chewing rough plant material. Only four teeth are used for chewing at a given time, and as each tooth wears out, another tooth moves forward to take its place in a process similar to a conveyor belt. The last and largest of these teeth usually becomes exposed when the animal is around 40 years of age, and will often last for an additional 20 years. When the last of these teeth has fallen out, regardless of the elephant's age, the animal will no longer be able to chew food and will die of starvation.[19][20]
Rabbits and other lagomorphs usually shed their deciduous teeth before (or very shortly after) their birth, and are usually born with their permanent teeth.[21] The teeth of rabbits complement their diet, which consists of a wide range of vegetation. Since many of the foods are abrasive enough to cause attrition, rabbit teeth grow continuously throughout life.[22] Rabbits have a total of six incisors, three upper premolars, three upper molars, two lower premolars, and two lower molars on each side. There are no canines. Dental formula is 2.0.3.31.0.2.3 = 28. Three to four millimeters of the tooth is worn away by incisors every week, whereas the cheek teeth require a month to wear away the same amount.[23]
The incisors and cheek teeth of rabbits are called aradicular hypsodont teeth. This is sometimes referred to as an elodent dentition. These teeth grow or erupt continuously. The growth or eruption is held in balance by dental abrasion from chewing a diet high in fiber.
Rodents have upper and lower hypselodont incisors that can continuously grow enamel throughout its life without having properly formed roots.[24] These teeth are also known as aradicular teeth, and unlike humans whose ameloblasts die after tooth development, rodents continually produce enamel, they must wear down their teeth by gnawing on various materials.[25] Enamel and dentin are produced by the enamel organ, and growth is dependent on the presence of stem cells, cellular amplification, and cellular maturation structures in the odontogenic region.[26] Rodent incisors are used for cutting wood, biting through the skin of fruit, or for defense. This allows for the rate of wear and tooth growth to be at equilibrium.[24] The microstructure of rodent incisor enamel has shown to be useful in studying the phylogeny and systematics of rodents because of its independent evolution from the other dental traits. The enamel on rodent incisors are composed of two layers: the inner portio interna (PI) with Hunter-Schreger bands (HSB) and an outer portio externa (PE) with radial enamel (RE).[27] It usually involves the differential regulation of the epithelial stem cell niche in the tooth of two rodent species, such as guinea pigs.[28][29]
The teeth have enamel on the outside and exposed dentin on the inside, so they self-sharpen during gnawing. On the other hand, continually growing molars are found in some rodent species, such as the sibling vole and the guinea pig.[28][29] There is variation in the dentition of the rodents, but generally, rodents lack canines and premolars, and have a space between their incisors and molars, called the diastema region.
Manatees are polyphyodont with mandibular molars developing separately from the jaw and are encased in a bony shell separated by soft tissue.[30][31]
Walrus tusks are canine teeth that grow continuously throughout life.[32]
Fish, such as sharks, may go through many teeth in their lifetime. The replacement of multiple teeth is known as polyphyodontia.
A class of prehistoric shark are called cladodonts for their strange forked teeth.
Unlike the continuous shedding of functional teeth seen in modern sharks,[33][34] the majority of stem chondrichthyan lineages retained all tooth generations developed throughout the life of the animal.[35] This replacement mechanism is exemplified by the tooth whorl-based dentitions of acanthodians,[36] which include the oldest known toothed vertebrate, Qianodus duplicis[37].
All amphibians have pedicellate teeth, which are modified to be flexible due to connective tissue and uncalcified dentine that separates the crown from the base of the tooth.[38]
Most amphibians exhibit teeth that have a slight attachment to the jaw or acrodont teeth. Acrodont teeth exhibit limited connection to the dentary and have little enervation.[39] This is ideal for organisms who mostly use their teeth for grasping, but not for crushing and allows for rapid regeneration of teeth at a low energy cost. Teeth are usually lost in the course of feeding if the prey is struggling. Additionally, amphibians that undergo a metamorphosis develop bicuspid shaped teeth.[40]
The teeth of reptiles are replaced constantly throughout their lives. Crocodilian juveniles replace teeth with larger ones at a rate as high as one new tooth per socket every month. Once mature, tooth replacement rates can slow to two years and even longer. Overall, crocodilians may use 3,000 teeth from birth to death. New teeth are created within old teeth.[41]
A skull of Ichthyornis discovered in 2014 suggests that the beak of birds may have evolved from teeth to allow chicks to escape their shells earlier, and thus avoid predators and also to penetrate protective covers such as hard earth to access underlying food.[42][43]
True teeth are unique to vertebrates,[44] although many invertebrates have analogous structures often referred to as teeth. The organisms with the simplest genome bearing such tooth-like structures are perhaps the parasitic worms of the family Ancylostomatidae.[45] For example, the hookworm Necator americanus has two dorsal and two ventral cutting plates or teeth around the anterior margin of the buccal capsule. It also has a pair of subdorsal and a pair of subventral teeth located close to the rear.[46]
Historically, the European medicinal leech, another invertebrate parasite, has been used in medicine to remove blood from patients.[47] They have three jaws (tripartite) that resemble saws in both appearance and function, and on them are about 100 sharp teeth used to incise the host. The incision leaves a mark that is an inverted Y inside of a circle. After piercing the skin and injecting anticoagulants (hirudin) and anaesthetics, they suck out blood, consuming up to ten times their body weight in a single meal.[48]
In some species of Bryozoa, the first part of the stomach forms a muscular gizzard lined with chitinous teeth that crush armoured prey such as diatoms. Wave-like peristaltic contractions then move the food through the stomach for digestion.[49]
Molluscs have a structure called a radula, which bears a ribbon of chitinous teeth. However, these teeth are histologically and developmentally different from vertebrate teeth and are unlikely to be homologous. For example, vertebrate teeth develop from a neural crest mesenchyme-derived dental papilla, and the neural crest is specific to vertebrates, as are tissues such as enamel.[44]
The radula is used by molluscs for feeding and is sometimes compared rather inaccurately to a tongue. It is a minutely toothed, chitinous ribbon, typically used for scraping or cutting food before the food enters the oesophagus. The radula is unique to molluscs, and is found in every class of mollusc apart from bivalves.
Within the gastropods, the radula is used in feeding by both herbivorous and carnivorous snails and slugs. The arrangement of teeth (also known as denticles) on the radula ribbon varies considerably from one group to another as shown in the diagram on the left.
Predatory marine snails such as the Naticidae use the radula plus an acidic secretion to bore through the shell of other molluscs. Other predatory marine snails, such as the Conidae, use a specialized radula tooth as a poisoned harpoon. Predatory pulmonate land slugs, such as the ghost slug, use elongated razor-sharp teeth on the radula to seize and devour earthworms. Predatory cephalopods, such as squid, use the radula for cutting prey.
In most of the more ancient lineages of gastropods, the radula is used to graze by scraping diatoms and other microscopic algae off rock surfaces and other substrates. Limpets scrape algae from rocks using radula equipped with exceptionally hard rasping teeth.[50] These teeth have the strongest known tensile strength of any biological material, outperforming spider silk.[50] The mineral protein of the limpet teeth can withstand a tensile stress of 4.9 GPa, compared to 4 GPa of spider silk and 0.5 GPa of human teeth.[51]
Because teeth are very resistant, often preserved when bones are not,[52] and reflect the diet of the host organism, they are very valuable to archaeologists and palaeontologists.[53] Early fish such as the thelodonts had scales composed of dentine and an enamel-like compound, suggesting that the origin of teeth was from scales which were retained in the mouth. Fish as early as the late Cambrian had dentine in their exoskeletons, which may have functioned in defense or for sensing their environments.[54] Dentine can be as hard as the rest of teeth and is composed of collagen fibres, reinforced with hydroxyapatite.[54]
Though teeth are very resistant, they also can be brittle and highly susceptible to cracking.[55] However, cracking of the tooth can be used as a diagnostic tool for predicting bite force. Additionally, enamel fractures can also give valuable insight into the diet and behaviour of archaeological and fossil samples.
Decalcification removes the enamel from teeth and leaves only the organic interior intact, which comprises dentine and cementine.[56] Enamel is quickly decalcified in acids,[57] perhaps by dissolution by plant acids or via diagenetic solutions, or in the stomachs of vertebrate predators.[56] Enamel can be lost by abrasion or spalling,[56] and is lost before dentine or bone are destroyed by the fossilisation process.[57] In such a case, the 'skeleton' of the teeth would consist of the dentine, with a hollow pulp cavity.[56] The organic part of dentine, conversely, is destroyed by alkalis.[57]
A dentist treats a patient with the help of a dental assistant.
|
|
Occupation | |
---|---|
Names |
[1][nb 1] |
Occupation type
|
Profession |
Activity sectors
|
Health care, Anatomy, Physiology, Pathology, Medicine, Pharmacology, Surgery |
Description | |
Competencies | |
Education required
|
Dental Degree |
Fields of
employment |
|
Related jobs
|
ICD-9-CM | 23-24 |
---|---|
MeSH | D003813 |
Dentistry, also known as dental medicine and oral medicine, is the branch of medicine focused on the teeth, gums, and mouth. It consists of the study, diagnosis, prevention, management, and treatment of diseases, disorders, and conditions of the mouth, most commonly focused on dentition (the development and arrangement of teeth) as well as the oral mucosa.[2] Dentistry may also encompass other aspects of the craniofacial complex including the temporomandibular joint. The practitioner is called a dentist.
The history of dentistry is almost as ancient as the history of humanity and civilization, with the earliest evidence dating from 7000 BC to 5500 BC.[3] Dentistry is thought to have been the first specialization in medicine which has gone on to develop its own accredited degree with its own specializations.[4] Dentistry is often also understood to subsume the now largely defunct medical specialty of stomatology (the study of the mouth and its disorders and diseases) for which reason the two terms are used interchangeably in certain regions. However, some specialties such as oral and maxillofacial surgery (facial reconstruction) may require both medical and dental degrees to accomplish. In European history, dentistry is considered to have stemmed from the trade of barber surgeons.[5]
Dental treatments are carried out by a dental team, which often consists of a dentist and dental auxiliaries (such as dental assistants, dental hygienists, dental technicians, and dental therapists). Most dentists either work in private practices (primary care), dental hospitals, or (secondary care) institutions (prisons, armed forces bases, etc.).
The modern movement of evidence-based dentistry calls for the use of high-quality scientific research and evidence to guide decision-making such as in manual tooth conservation, use of fluoride water treatment and fluoride toothpaste, dealing with oral diseases such as tooth decay and periodontitis, as well as systematic diseases such as osteoporosis, diabetes, celiac disease, cancer, and HIV/AIDS which could also affect the oral cavity. Other practices relevant to evidence-based dentistry include radiology of the mouth to inspect teeth deformity or oral malaises, haematology (study of blood) to avoid bleeding complications during dental surgery, cardiology (due to various severe complications arising from dental surgery with patients with heart disease), etc.
The term dentistry comes from dentist, which comes from French dentiste, which comes from the French and Latin words for tooth.[6] The term for the associated scientific study of teeth is odontology (from Ancient Greek: á½€δοÃÂÂÂÂÂÂÂς, romanized: odoús, lit. 'tooth') – the study of the structure, development, and abnormalities of the teeth.
Dentistry usually encompasses practices related to the oral cavity.[7] According to the World Health Organization, oral diseases are major public health problems due to their high incidence and prevalence across the globe, with the disadvantaged affected more than other socio-economic groups.[8]
The majority of dental treatments are carried out to prevent or treat the two most common oral diseases which are dental caries (tooth decay) and periodontal disease (gum disease or pyorrhea). Common treatments involve the restoration of teeth, extraction or surgical removal of teeth, scaling and root planing, endodontic root canal treatment, and cosmetic dentistry[9]
By nature of their general training, dentists, without specialization can carry out the majority of dental treatments such as restorative (fillings, crowns, bridges), prosthetic (dentures), endodontic (root canal) therapy, periodontal (gum) therapy, and extraction of teeth, as well as performing examinations, radiographs (x-rays), and diagnosis. Dentists can also prescribe medications used in the field such as antibiotics, sedatives, and any other drugs used in patient management. Depending on their licensing boards, general dentists may be required to complete additional training to perform sedation, dental implants, etc.
Dentists also encourage the prevention of oral diseases through proper hygiene and regular, twice or more yearly, checkups for professional cleaning and evaluation. Oral infections and inflammations may affect overall health and conditions in the oral cavity may be indicative of systemic diseases, such as osteoporosis, diabetes, celiac disease or cancer.[7][10][13][14] Many studies have also shown that gum disease is associated with an increased risk of diabetes, heart disease, and preterm birth. The concept that oral health can affect systemic health and disease is referred to as "oral-systemic health".
John M. Harris started the world's first dental school in Bainbridge, Ohio, and helped to establish dentistry as a health profession. It opened on 21 February 1828, and today is a dental museum.[15] The first dental college, Baltimore College of Dental Surgery, opened in Baltimore, Maryland, US in 1840. The second in the United States was the Ohio College of Dental Surgery, established in Cincinnati, Ohio, in 1845.[16] The Philadelphia College of Dental Surgery followed in 1852.[17] In 1907, Temple University accepted a bid to incorporate the school.
Studies show that dentists that graduated from different countries,[18] or even from different dental schools in one country,[19] may make different clinical decisions for the same clinical condition. For example, dentists that graduated from Israeli dental schools may recommend the removal of asymptomatic impacted third molar (wisdom teeth) more often than dentists that graduated from Latin American or Eastern European dental schools.[20]
In the United Kingdom, the first dental schools, the London School of Dental Surgery and the Metropolitan School of Dental Science, both in London, opened in 1859.[21] The British Dentists Act of 1878 and the 1879 Dentists Register limited the title of "dentist" and "dental surgeon" to qualified and registered practitioners.[22][23] However, others could legally describe themselves as "dental experts" or "dental consultants".[24] The practice of dentistry in the United Kingdom became fully regulated with the 1921 Dentists Act, which required the registration of anyone practising dentistry.[25] The British Dental Association, formed in 1880 with Sir John Tomes as president, played a major role in prosecuting dentists practising illegally.[22] Dentists in the United Kingdom are now regulated by the General Dental Council.
In many countries, dentists usually complete between five and eight years of post-secondary education before practising. Though not mandatory, many dentists choose to complete an internship or residency focusing on specific aspects of dental care after they have received their dental degree. In a few countries, to become a qualified dentist one must usually complete at least four years of postgraduate study;[26] Dental degrees awarded around the world include the Doctor of Dental Surgery (DDS) and Doctor of Dental Medicine (DMD) in North America (US and Canada), and the Bachelor of Dental Surgery/Baccalaureus Dentalis Chirurgiae (BDS, BDent, BChD, BDSc) in the UK and current and former British Commonwealth countries.
All dentists in the United States undergo at least three years of undergraduate studies, but nearly all complete a bachelor's degree. This schooling is followed by four years of dental school to qualify as a "Doctor of Dental Surgery" (DDS) or "Doctor of Dental Medicine" (DMD). Specialization in dentistry is available in the fields of Anesthesiology, Dental Public Health, Endodontics, Oral Radiology, Oral and Maxillofacial Surgery, Oral Medicine, Orofacial Pain, Pathology, Orthodontics, Pediatric Dentistry (Pedodontics), Periodontics, and Prosthodontics.[27]
Some dentists undertake further training after their initial degree in order to specialize. Exactly which subjects are recognized by dental registration bodies varies according to location. Examples include:
Tooth decay was low in pre-agricultural societies, but the advent of farming society about 10,000 years ago correlated with an increase in tooth decay (cavities).[32] An infected tooth from Italy partially cleaned with flint tools, between 13,820 and 14,160 years old, represents the oldest known dentistry,[33] although a 2017 study suggests that 130,000 years ago the Neanderthals already used rudimentary dentistry tools.[34] In Italy evidence dated to the Paleolithic, around 13,000 years ago, points to bitumen used to fill a tooth[35] and in Neolithic Slovenia, 6500 years ago, beeswax was used to close a fracture in a tooth.[36] The Indus valley has yielded evidence of dentistry being practised as far back as 7000 BC, during the Stone Age.[37] The Neolithic site of Mehrgarh (now in Pakistan's south western province of Balochistan) indicates that this form of dentistry involved curing tooth related disorders with bow drills operated, perhaps, by skilled bead-crafters.[3] The reconstruction of this ancient form of dentistry showed that the methods used were reliable and effective.[38] The earliest dental filling, made of beeswax, was discovered in Slovenia and dates from 6500 years ago.[39] Dentistry was practised in prehistoric Malta, as evidenced by a skull which had a dental abscess lanced from the root of a tooth dating back to around 2500 BC.[40]
An ancient Sumerian text describes a "tooth worm" as the cause of dental caries.[41] Evidence of this belief has also been found in ancient India, Egypt, Japan, and China. The legend of the worm is also found in the Homeric Hymns,[42] and as late as the 14th century AD the surgeon Guy de Chauliac still promoted the belief that worms cause tooth decay.[43]
Recipes for the treatment of toothache, infections and loose teeth are spread throughout the Ebers Papyrus, Kahun Papyri, Brugsch Papyrus, and Hearst papyrus of Ancient Egypt.[44] The Edwin Smith Papyrus, written in the 17th century BC but which may reflect previous manuscripts from as early as 3000 BC, discusses the treatment of dislocated or fractured jaws.[44][45] In the 18th century BC, the Code of Hammurabi referenced dental extraction twice as it related to punishment.[46] Examination of the remains of some ancient Egyptians and Greco-Romans reveals early attempts at dental prosthetics.[47] However, it is possible the prosthetics were prepared after death for aesthetic reasons.[44]
Ancient Greek scholars Hippocrates and Aristotle wrote about dentistry, including the eruption pattern of teeth, treating decayed teeth and gum disease, extracting teeth with forceps, and using wires to stabilize loose teeth and fractured jaws.[48] Use of dental appliances, bridges and dentures was applied by the Etruscans in northern Italy, from as early as 700 BC, of human or other animal teeth fastened together with gold bands.[49][50][51] The Romans had likely borrowed this technique by the 5th century BC.[50][52] The Phoenicians crafted dentures during the 6th–4th century BC, fashioning them from gold wire and incorporating two ivory teeth.[53] In ancient Egypt, Hesy-Ra is the first named "dentist" (greatest of the teeth). The Egyptians bound replacement teeth together with gold wire. Roman medical writer Cornelius Celsus wrote extensively of oral diseases as well as dental treatments such as narcotic-containing emollients and astringents.[54] The earliest dental amalgams were first documented in a Tang dynasty medical text written by the Chinese physician Su Kung in 659, and appeared in Germany in 1528.[55][56]
During the Islamic Golden Age Dentistry was discussed in several famous books of medicine such as The Canon in medicine written by Avicenna and Al-Tasreef by Al-Zahrawi who is considered the greatest surgeon of the Middle Ages,[57] Avicenna said that jaw fracture should be reduced according to the occlusal guidance of the teeth; this principle is still valid in modern times. Al-Zahrawi invented over 200 surgical tools that resemble the modern kind.[58]
Historically, dental extractions have been used to treat a variety of illnesses. During the Middle Ages and throughout the 19th century, dentistry was not a profession in itself, and often dental procedures were performed by barbers or general physicians. Barbers usually limited their practice to extracting teeth which alleviated pain and associated chronic tooth infection. Instruments used for dental extractions date back several centuries. In the 14th century, Guy de Chauliac most probably invented the dental pelican[59] (resembling a pelican's beak) which was used to perform dental extractions up until the late 18th century. The pelican was replaced by the dental key[60] which, in turn, was replaced by modern forceps in the 19th century.[61]
The first book focused solely on dentistry was the "Artzney Buchlein" in 1530,[48] and the first dental textbook written in English was called "Operator for the Teeth" by Charles Allen in 1685.[23]
In the United Kingdom, there was no formal qualification for the providers of dental treatment until 1859 and it was only in 1921 that the practice of dentistry was limited to those who were professionally qualified. The Royal Commission on the National Health Service in 1979 reported that there were then more than twice as many registered dentists per 10,000 population in the UK than there were in 1921.[62]
It was between 1650 and 1800 that the science of modern dentistry developed. The English physician Thomas Browne in his A Letter to a Friend (c. 1656 pub. 1690) made an early dental observation with characteristic humour:
The Egyptian Mummies that I have seen, have had their Mouths open, and somewhat gaping, which affordeth a good opportunity to view and observe their Teeth, wherein 'tis not easie to find any wanting or decayed: and therefore in Egypt, where one Man practised but one Operation, or the Diseases but of single Parts, it must needs be a barren Profession to confine unto that of drawing of Teeth, and little better than to have been Tooth-drawer unto King Pyrrhus, who had but two in his Head.
The French surgeon Pierre Fauchard became known as the "father of modern dentistry". Despite the limitations of the primitive surgical instruments during the late 17th and early 18th century, Fauchard was a highly skilled surgeon who made remarkable improvisations of dental instruments, often adapting tools from watchmakers, jewelers and even barbers, that he thought could be used in dentistry. He introduced dental fillings as treatment for dental cavities. He asserted that sugar-derived acids like tartaric acid were responsible for dental decay, and also suggested that tumors surrounding the teeth and in the gums could appear in the later stages of tooth decay.[63][64]
Fauchard was the pioneer of dental prosthesis, and he invented many methods to replace lost teeth. He suggested that substitutes could be made from carved blocks of ivory or bone. He also introduced dental braces, although they were initially made of gold, he discovered that the teeth position could be corrected as the teeth would follow the pattern of the wires. Waxed linen or silk threads were usually employed to fasten the braces. His contributions to the world of dental science consist primarily of his 1728 publication Le chirurgien dentiste or The Surgeon Dentist. The French text included "basic oral anatomy and function, dental construction, and various operative and restorative techniques, and effectively separated dentistry from the wider category of surgery".[63][64]
After Fauchard, the study of dentistry rapidly expanded. Two important books, Natural History of Human Teeth (1771) and Practical Treatise on the Diseases of the Teeth (1778), were published by British surgeon John Hunter. In 1763, he entered into a period of collaboration with the London-based dentist James Spence. He began to theorise about the possibility of tooth transplants from one person to another. He realised that the chances of a successful tooth transplant (initially, at least) would be improved if the donor tooth was as fresh as possible and was matched for size with the recipient. These principles are still used in the transplantation of internal organs. Hunter conducted a series of pioneering operations, in which he attempted a tooth transplant. Although the donated teeth never properly bonded with the recipients' gums, one of Hunter's patients stated that he had three which lasted for six years, a remarkable achievement for the period.[65]
Major advances in science were made in the 19th century, and dentistry evolved from a trade to a profession. The profession came under government regulation by the end of the 19th century. In the UK, the Dentist Act was passed in 1878 and the British Dental Association formed in 1879. In the same year, Francis Brodie Imlach was the first ever dentist to be elected President of the Royal College of Surgeons (Edinburgh), raising dentistry onto a par with clinical surgery for the first time.[66]
Long term occupational noise exposure can contribute to permanent hearing loss, which is referred to as noise-induced hearing loss (NIHL) and tinnitus. Noise exposure can cause excessive stimulation of the hearing mechanism, which damages the delicate structures of the inner ear.[67] NIHL can occur when an individual is exposed to sound levels above 90 dBA according to the Occupational Safety and Health Administration (OSHA). Regulations state that the permissible noise exposure levels for individuals is 90 dBA.[68] For the National Institute for Occupational Safety and Health (NIOSH), exposure limits are set to 85 dBA. Exposures below 85 dBA are not considered to be hazardous. Time limits are placed on how long an individual can stay in an environment above 85 dBA before it causes hearing loss. OSHA places that limitation at 8 hours for 85 dBA. The exposure time becomes shorter as the dBA level increases.
Within the field of dentistry, a variety of cleaning tools are used including piezoelectric and sonic scalers, and ultrasonic scalers and cleaners.[69] While a majority of the tools do not exceed 75 dBA,[70] prolonged exposure over many years can lead to hearing loss or complaints of tinnitus.[71] Few dentists have reported using personal hearing protective devices,[72][73] which could offset any potential hearing loss or tinnitus.
There is a movement in modern dentistry to place a greater emphasis on high-quality scientific evidence in decision-making. Evidence-based dentistry (EBD) uses current scientific evidence to guide decisions. It is an approach to oral health that requires the application and examination of relevant scientific data related to the patient's oral and medical health. Along with the dentist's professional skill and expertise, EBD allows dentists to stay up to date on the latest procedures and patients to receive improved treatment. A new paradigm for medical education designed to incorporate current research into education and practice was developed to help practitioners provide the best care for their patients.[74] It was first introduced by Gordon Guyatt and the Evidence-Based Medicine Working Group at McMaster University in Ontario, Canada in the 1990s. It is part of the larger movement toward evidence-based medicine and other evidence-based practices, especially since a major part of dentistry involves dealing with oral and systemic diseases. Other issues relevant to the dental field in terms of evidence-based research and evidence-based practice include population oral health, dental clinical practice, tooth morphology etc.
Dentistry is unique in that it requires dental students to have competence-based clinical skills that can only be acquired through supervised specialized laboratory training and direct patient care.[75] This necessitates the need for a scientific and professional basis of care with a foundation of extensive research-based education.[76] According to some experts, the accreditation of dental schools can enhance the quality and professionalism of dental education.[77][78]
cite web
: CS1 maint: bot: original URL status unknown (link)